Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 149(3): 846-858, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38167886

RESUMO

Lipid alterations in the brain are well-documented in disease and aging, but our understanding of their pathogenic implications remains incomplete. Recent technological advances in assessing lipid profiles have enabled us to intricately examine the spatiotemporal variations in lipid compositions within the complex brain characterized by diverse cell types and intricate neural networks. In this study, we coupled time-of-flight secondary ion mass spectrometry (ToF-SIMS) to an amyotrophic lateral sclerosis (ALS) Drosophila model, for the first time, to elucidate changes in the lipid landscape and investigate their potential role in the disease process, serving as a methodological and analytical complement to our prior approach that utilized matrix-assisted laser desorption/ionization mass spectrometry. The expansion of G4C2 repeats in the C9orf72 gene is the most prevalent genetic factor in ALS. Our findings indicate that expressing these repeats in fly brains elevates the levels of fatty acids, diacylglycerols, and ceramides during the early stages (day 5) of disease progression, preceding motor dysfunction. Using RNAi-based genetic screening targeting lipid regulators, we found that reducing fatty acid transport protein 1 (FATP1) and Acyl-CoA-binding protein (ACBP) alleviates the retinal degeneration caused by G4C2 repeat expression and also markedly restores the G4C2-dependent alterations in lipid profiles. Significantly, the expression of FATP1 and ACBP is upregulated in G4C2-expressing flies, suggesting their contribution to lipid dysregulation. Collectively, our novel use of ToF-SIMS with the ALS Drosophila model, alongside methodological and analytical improvements, successfully identifies crucial lipids and related genetic factors in ALS pathogenesis.


Assuntos
Esclerose Amiotrófica Lateral , Animais , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Drosophila , Espectrometria de Massa de Íon Secundário , Lipídeos
2.
ACS Omega ; 8(51): 48994-49008, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162759

RESUMO

The Zika virus (ZIKV) is believed to cause birth defects, and no anti-ZIKV drugs have been approved by medical organizations to date. Starting from antimicrobial lead compounds with a pyrazolo[3,4-d]pyridazine-7-one scaffold, we synthesized 16 derivatives and screened their ability to interfere with ZIKV infection utilizing a cell-based phenotypic assay. Of these, five compounds showed significant inhibition of ZIKV with a selective index value greater than 4.6. In particular, compound 9b showed the best anti-ZIKV activity with a selectivity index of 22.4 (half-maximal effective concentration = 25.6 µM and 50% cytotoxic concentration = 572.4 µM). Through the brine shrimp lethality bioassay, 9b, 10b, 12, 17a, and 19a showed median lethal dose values in a range of 87.2-100.3 µg/mL. Compound 9b was also targeted to the NS2B-NS3 protease of ZIKV using molecular docking protocols, in which it acted as a noncompetitive inhibitor and strongly bound to five key amino acids (His51, Asp75, Ser135, Ala132, Tyr161). Utilizing the pharmacophore model of 9b, the top 20 hits were identified as prospective inhibitors of NS2B-NS3 protease, and six of them were confirmed for their stability with the protease via redocking and molecular dynamics simulations.

3.
Anal Chem ; 94(26): 9297-9305, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35696262

RESUMO

The importance of multi-omic-based approaches to better understand diverse pathological mechanisms including neurodegenerative diseases has emerged. Spatial information can be of great help in understanding how biomolecules interact pathologically and in elucidating target biomarkers for developing therapeutics. While various analytical methods have been attempted for imaging-based biomolecule analysis, a multi-omic approach to imaging remains challenging due to the different characteristics of biomolecules. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a powerful tool due to its sensitivity, chemical specificity, and high spatial resolution in visualizing chemical information in cells and tissues. In this paper, we suggest a new strategy to simultaneously obtain the spatial information of various kinds of biomolecules that includes both labeled and label-free approaches using ToF-SIMS. The enzyme-assisted labeling strategy for the targets of interest enables the sensitive and specific imaging of large molecules such as peptides, proteins, and mRNA, a task that has been, to date, difficult for any MS analysis. Together with the strength of the analytical performance of ToF-SIMS in the label-free tissue imaging of small biomolecules, the proposed strategy allows one to simultaneously obtain integrated information of spatial distribution of metabolites, lipids, peptides, proteins, and mRNA at a high resolution in a single measurement. As part of the suggested strategy, we present a sample preparation method suitable for MS imaging. Because a comprehensive method to examine the spatial distribution of multiple biomolecules in tissues has remained elusive, our strategy can be a useful tool to support the understanding of the interactions of biomolecules in tissues as well as pathological mechanisms.


Assuntos
Peptídeos , Espectrometria de Massa de Íon Secundário , Animais , Encéfalo , Camundongos , Camundongos Transgênicos , RNA Mensageiro , Espectrometria de Massa de Íon Secundário/métodos
4.
ACS Appl Mater Interfaces ; 13(49): 58393-58400, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34846139

RESUMO

Biomolecule detection based on surface-enhanced Raman scattering (SERS) for application to biosensors and bio-imaging requires the fabrication of SERS nanoprobes that can generate strong Raman signals as well as surface modifications for analyte-specific recognition and binding. Such requirements lead to disadvantages in terms of reproducibility and practicality, and thus, it has been difficult to apply biomolecule detection utilizing the advantages of the SERS phenomenon to actual clinically relevant analysis. To achieve reproducible and practical SERS signal generation in a biomolecule-specific manner without requiring the synthesis of nanostructures and their related surface modification to introduce molecules for specific recognition, we developed a new type of SERS probe formed by enzyme reactions in the presence of Raman reporters. By forming unique plasmonic structures, our method achieves the detection of biomolecules on chips with uniform and stable signals over long periods. To test the proposed approach, we applied it to a SERS-based immunohistochemistry assay and found successful multiplexed protein detection in brain tissue from transgenic mice.


Assuntos
Actinas/análise , Peptídeos beta-Amiloides/análise , Materiais Biocompatíveis/análise , Proteína Glial Fibrilar Ácida/análise , Nanopartículas Metálicas/química , Prata/química , Animais , Encéfalo/diagnóstico por imagem , Teste de Materiais , Camundongos , Camundongos Transgênicos , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
5.
J Am Soc Mass Spectrom ; 32(10): 2536-2545, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34448582

RESUMO

Amyotrophic lateral sclerosis (ALS) is a degenerative disease caused by motor neuron damage in the central nervous system, and it is difficult to diagnose early. Drosophila melanogaster is widely used to investigate disease mechanisms and discover biomarkers because it is easy to induce disease in Drosophila through genetic engineering. We performed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to investigate changes in phospholipid distribution in the brain tissue of an ALS-induced Drosophila model. Fly brain tissues of several hundred micrometers or less were sampled using a fly collar to obtain reproducible tissue sections of similar sizes. MSI of brain tissues of Drosophila cultured for 1 or 10 days showed that the distribution of phospholipids, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA), phosphatidylserine (PS), and phosphatidylinositol (PI), was significantly different between the control group and the ALS group. In addition, the lipid profile according to phospholipids differed as the culture time increased from 1 to 10 days. These results suggest that disease indicators based on lipid metabolites can be discovered by performing MALDI-MSI on very small brain tissue samples from the Drosophila disease model to ultimately assess the phospholipid changes that occur in early-stage ALS.


Assuntos
Esclerose Amiotrófica Lateral/metabolismo , Imagem Molecular/métodos , Fosfolipídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Química Encefálica/fisiologia , Modelos Animais de Doenças , Drosophila melanogaster , Fosfolipídeos/análise , Fosfolipídeos/química
6.
Biointerphases ; 13(3): 03B414, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29602282

RESUMO

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging elucidates molecular distributions in tissue sections, providing useful information about the metabolic pathways linked to diseases. However, delocalization of the analytes and inadequate tissue adherence during sample preparation are among some of the unfortunate phenomena associated with this technique due to their role in the reduction of the quality, reliability, and spatial resolution of the ToF-SIMS images. For these reasons, ToF-SIMS imaging requires a more rigorous sample preparation method in order to preserve the natural state of the tissues. The traditional thaw-mounting method is particularly vulnerable to altered distributions of the analytes due to thermal effects, as well as to tissue shrinkage. In the present study, the authors made comparisons of different tissue mounting methods, including the thaw-mounting method. The authors used conductive tape as the tissue-mounting material on the substrate because it does not require heat from the finger for the tissue section to adhere to the substrate and can reduce charge accumulation during data acquisition. With the conductive-tape sampling method, they were able to acquire reproducible tissue sections and high-quality images without redistribution of the molecules. Also, the authors were successful in preserving the natural states and chemical distributions of the different components of fat metabolites such as diacylglycerol and fatty acids by using the tape-supported sampling in microRNA-14 (miR-14) deleted Drosophila models. The method highlighted here shows an improvement in the accuracy of mass spectrometric imaging of tissue samples.


Assuntos
Drosophila/química , Técnicas de Preparação Histocitológica/métodos , Processamento de Imagem Assistida por Computador/métodos , Lipídeos/análise , Espectrometria de Massa de Íon Secundário/métodos , Animais , Drosophila/genética , Deleção de Genes , MicroRNAs/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...